INTEGRACIÓN Y NATURACIÓN URBANA
El objetivo de sostenibilidad del proyecto no se limita únicamente a los resultados numéricos de emisiones. Sino que intenta ir más allá fomentando y mejorando factores de cohesión social y optimización de los recursos naturales. En esta línea se plantean nuevos criterios de diseño exterior consistentes en:
1- La integración urbana mediante la implantación de un umbral de bordes suaves. Como ya planteaba Jane Jacobs en 1961 “una calle segura es la que propone una clara pero amable de limitación entre el espacio público y el privado, con gente y movimiento constantes,donde los edificios miren hacia la acera para que muchos ojos la custodien”. En la misma línea el arquitecto danés Jan Gebl en La humanización del Espacio Urbano, un trabajo conjunto entre médicos y arquitectos higienistas plantea el espacio que hay entre los edificios como pilar fundamental para salud comunitaria y pone en evidencia el fracaso delas soluciones de encerramiento en guetos y repliegue al espacio privado, custodiado por murallas, alarmas y ejércitos privados como medios para generar una calidad de vida urbana, agravando aún más el problema.
Gran parte de estas ideas, absolutamente innovadoras en su época, como la mezcla de usos, la densidad equilibrada, la prioridad de los peatones, las identidades barriales o el cuidado diseño del espacio público son evidentes en el diseño urbano actual de Villanueva de la Cañada, haciéndola tan atractiva para el asentamiento a nuevas familias.
En el proyecto hemos querido alinearnos con estos criterios y, teniendo en cuenta los estudios de Gebl sobre la posibilidad de influir en el encuentro social de la calle desde el espacio privado de la vivienda, hemos planteado un tratamiento progresivo de la privacidad a través del jardín delantero. Lo que denominó el umbral de bordes suaves. El cierre delantero se plantea como un muro bajo con jardineras de obra para la ubicación de plantas aromáticas y un cerramiento superior ligero que permite el intercambio vecinal dentro-fuera durante las distintas actividades de jardinería y juego.En la entrada de la vivienda se prevé una terraza en al que se ubicará mobiliario de jardín y una zona verde de juego. Además, en la cocina,ligeramente elevada, se prevé un gran ventanal que facilitará la observación delas zonas de juego y paseo exteriores.
2- Superficies verdes. Una estrategia efectiva para reducir la demanda energética en la edificación es la introducción de sistemas vegetales tanto en cubierta como en fachada.En localidades con elevada irradiación la capacidad de las plantas para absorber la radiación solar sin incrementar su temperatura es debido a que la energía recibida es utilizada para la realización de sus funciones biológicas, al contrario de lo que ocurre con otros materiales pasivos, permitiendo que la vegetación no se sobrecaliente, reduciendo significativamente las cargas térmicas transmitidas al edificio. Además, aumentar las superficies biológicas en las zonas urbanas, contribuye a la regulación del ciclo hidrológico,a la absorción de ruido, a la filtración de partículas contaminantes y a la protección de la biodiversidad.
3- Óptimo tratamiento del terreno para mejorar la filtración de agua hacia los acuíferos limitando la formación de escorrentía superficial. El aparcamiento se dispone de dos plazas de superficie sin cubrir dentro de la parcela, a las que se accede directamente desde la calle a través de una puerta corredera.Las mismas se plantean con un solado antideslizante y permeable a la lluvia, a base de taco de hormigón perforado relleno de tierra vegetal sobre capa compactada de arena de río, facilitando así la absorción de agua de lluvia.
El acceso a la vivienda desde la calle se realizará mediante una rampa pavimentada antideslizante con una inclinación del 8,7% de 90cms de ancho para tener un máximo de zona ajardinada.
4– Reducción del efecto “isla de calor”. La suma de todas las estrategias anteriores busca tener también un especial impacto sobre el efecto “isla de calor” que se produce en las zonas urbanizadas. Las características físicas del espacio construido tradicional marcadas por su impermeabilidad y su alta capacidad de almacenamiento térmico, añadidos a las fuentes antropogénicasde calor y emisiones, aumentan el problema “isla de calor” que ocurre como resultado del aumento del flujo de calor sensible desd ela superficie de la tierra a la atmósfera,especialmente durante el periodo nocturno. Este fenómeno se ve en constante aumento debido a la sustitución de áreas de vegetación por edificios y superficies impermeables captadoras de calor durante el día que lo devuelven en forma de radiación infrarroja durante la noche,impidiendo el enfriamiento nocturno que debería regular el ecosistema urbano.La progresiva incorporación a los edificios de superficies vegetales y permeables permitirán mitigar este efecto negativo, mejorar el confort exterior y reducir la demanda eléctrica de refrigeración.
Aspectos técnicos remarcables:
Composición y transmitancia del cerramiento de fachada:
La envolvente energética de fachada está formada de fuera a dentro por un sistema SATE compuesto por un mortero acrílico reforzado,paneles de aislamiento EPS neopor 18cm, sistema estructural y aislante de CLT9 cm. Según zonas, las superficies interiores pueden mostrar el panel de madera visto o bien estar revestidas con trasdosado de cartón yeso con cámara rellena de lana mineral, sin haberse tenido esta en cuenta para el cálculo global.
Composición y transmitancia de solera/forjado planta baja:
El forjado de planta baja es homogéneo en toda su superficie y está en contacto con el terreno. Se compone de una capa de grava de entre 20-30 cm de espesor. Una capa de hormigón de limpieza para regularización de la superficie previa la colocación del aislamiento de xps. Para evitar el contacto del aislamiento con humedad o agua que pudiera ascender por capilaridad se ha colocado una lámina de film impermeabilizante previa a la colocación de las dos capas de aislamiento xps de 60mm cada una colocada contrapeada. A continuación se ha procedido a colocar un nuevo film impermeable previo al vertido del hormigón de la losa.
Composición y transmitancia de cubierta:
El proyecto se resuelve con tres tipos de cubiertas:
A CUBIERTAS INCLINADAS. Las cubiertas inclinadas se conforman mediante una estructura de madera formada por vigas laminadas sobre las que apoya una tarima machihembrada de 2cms de espesor. Sobre la misma se coloca un panel osb de 2cms de espesor que se encinta para alcanzar la hermeticidad del conjunto. A continuación se colocan planchas de xps de 30 cms de espesor y sobre las mismas una lámina impermeabilizante transpirable Transpir 135 de Rothoblaas sobre la que coloca doble rastrel para recibir las tejas planas permitiendo una cámara ventilada.
B CUBIERTA PLANA. Las cubiertas sobre planta baja son terrazas transitables que se configuran sobre el forjado de CLT de 12cms de espesor. Sobre el mismo se coloca un aislamiento de xps de 14cms formado por doble plancha de 8+6 cm. Sobre la misma se realiza la formación de pendientes mediante mortero aligerado y se coloca una lámina impermeabilizante de EPDM que se protege a su vez con una manta geotextil sobre la que se recibe un pavimento flotante formado por plots y cerámica espesurizada o bien por losas filtrón. El aislamiento de las cubiertas planas se completa con una capa de lana mineral bajo el forjado de 10 cms de espesor.
Carpinterías,marco, vidrio, valor g, valores U:
Los vidrios elegidos para el conjunto del edificio es el siguiente: 3+3 /18/4/ 18 /3+3. Los valores emitidos por el fabricante según los establecido en las normas europeas EN 410-2011 y EN 673-2011, las normas internacionales ISO 9050 , la norma japonesa JIS R 3106/307, la norma coreana KS L 2514/2525. se han calculado en CALUMEN III y son: Ug= 0,526W/m2K y G= 0,51para el Factor Solar.
Las ventanas elegidas son el modelo MATUD M90 de Carmave SL, ventanas de madera con aislamiento PU 0,028W/mK en el marco y una inserción del vidrio de 15mm e intercalario Swisspacer ultimate, que cuentan con el certificado del instituto passivhaus. El valor certificado de transmitancia del marco Uf :1.03 W/m2K para los perfiles superior , inferior y lateral con un ancho de 121mm y Uf:1.09 W/m2K para el montante central en la ventana de dos hojas que suma un ancho de 185mm. El intercalario utilizado en estas ventanas es el SWISSPACER Ultimate con un valor Ψg declarado de 0.023W/mK.
El hueco completo correspondiente a la puerta principal es de 2,10 x 1,06m . La puerta se realiza mediante el mismo perfil de madera que las ventanas M90 con las mismas características, sustituyendo los vidrios por un sistema de panel sándwich formado por tablero 15 mm , xps 40mm y tablero 15mm y cuyo valor finales 0.647 W/m2K. Analizados en Therm los puentes térmicos de la instalación teniendo en cuenta todos los valores equivalentes la puerta tiene una transmitacia instalada de 1,23 W/m2K
Sistema de ventilación, características, eficiencia, otros datos:
Dado el volumen de la vivienda se ha prescrito una máquina Zehnder ComfoAir Q350 HRV de doble flujo con recuperador de calor certificada passivhaus con una eficacia del 90%.
Sistema de ACS, características:
El proyecto prevé la incorporación de un sistema de aerotermia de alta eficiencia energética para la producción de ACS con la posibilidad de aporte calórico o refrigerante mediante techos radiantes en los momentos puntuales de picos de calor o frío que puedan ocasionalmente generarse a lo largo del año.
Aspectos ecológicos si los hay:
Se han incorporado dos fuentes renovables. Una chimenea estanca de leña y un sistema de autoconsumo solar instantáneo compuesto por 6 módulos fotovoltaicos de vidrio-vidrio marca Solarwatt de 305Wp en dos ubicaciones. Como se ha descrito en la introducción se ha implementado diversas estrategias de integración y naturación urbana.
Componentes remarcables:
La incorporación de emisores de frío/calor en forma de paneles radiantes puntuales por estancias ha cumplido las expectativas de confort del usuario en inviernos y sobre todo verano y ha resultado la solución más económica y sencilla de implementar dada la configuración de techos y paredes vistas de madera al interior.
Se han colocado 6 paneles radiantes de 1,20 x 2,00 en paredes y techos mediante un sistema sencillo de tuberías frío-calor, que permite regular pequeños aportes puntuales de calefacción y refrigeración cuando las condiciones exteriores e interiores de uso así lo requieran.
Comentarios adicionales:
Testimonio del promotor o de la persona que vive en el edificio Passivhaus. ¿En qué ha visto mejorada su calidad de vida? ¿Ha notado reducción en la factura? ¿Qué le ha impulsado a llevar a cabo una obra Passivhaus? ¿Cuáles han sido los aspectos más complicados del proceso?
“La percepción general es de confort con una sensación muy agradable. Se siente que no hay corrientes de aire y la temperatura es estable tanto en invierno como en verano. Los cambios de temperatura son progresivos. La luz del sol se aprovecha tanto lumínicamente como a nivel térmico durante todo el año. El doble flujo de aire(extracción, impulsión) parece eficaz, no se traduce en sensación de “pecera” y el ruido es mínimo. En definitiva, estamos muy a gusto dentro de la casa."
Tipo de edificio |
|
Tipología | Unifamiliar semiadosada |
m² útiles construidos | 150 |
Tipo de construcción | Madera |
Tipo de obra | Obra nueva |
Certificación | Certificada |
Gasto Energético |
|
Test de presión | 0.6 h⁻¹ |
Demanda de calefacción anual | 14.0 kWh/(m²a) |
Carga de calefacción | 11.0 W/m² |
Demanda de refrigeración anual | 6.0 kWh/(m²a) |
Carga de refrigeración | 7.0 W/m² |
Demanda total de energía primaria | 79.0 kWh/(m²a) |
Aspectos Técnicos |
|
Arquitecto | Lorena Pascual García |
Arquitecto técnico | Fran Crespo |
Consultor PH/Ingeniero | |
Promotor | Sara Aspas y Emmanuel Marchand |
Constructor | Madergia |
Instalador | Madergia |
Empresa Certificadora | Jesús Menéndez |